Аддитивные технологии в российской промышленности. Аддитивные технологии - индикатор развития государства Аддитивные технологии в пищевой отрасли

Аддитивные технологии (производства) (далее АТ и АП) за последние 20 лет образовали интенсивно развивающийся инновационный сегмент технологии машиностроения: достигнуты впечатляющие практические результаты, сформирован мировой рынок технологий, оборудования и услуг, развернут широкий фронт научно-исследовательских и опытно-конструкторских работ, начата подготовка квалифицированных кадров, появилась предметно ориентированная научная и учебно-методическая литература . Развивается понятийный аппарат этой области технологических знаний, проводятся интенсивные работы по стандартизации и сертификации продукции . Приведенный ниже материал основан на определении аддитивных технологий, предложенном American Society for Testing and Materials - организацией, которая занимается разработкой технических стандартов для материалов, изделий, систем и услуг (стандарт ASTM F2792.1549323–1).

Два основных признака определяют этот сегмент технологий:

Признак аддитивности - конечная конфигурация изделия получается путем целенаправленного добавления дозированных объемов (масс) материала к исходной конфигурации или к подложке;

Признак виртуальности - в основе создания изделия лежит его цифровая модель.

В литературе представлены многочисленные классификационные модели аддитивных технологий. Так, по классификации ASTM аддитивные технологии разделены на 7 групп (русский перевод и пояснения М. А. Зленко ):

1. Material Extrusion - выдавливание материала или послойное нанесение расплавленного строительного материала через экструдер;

2. Material Jetting - разбрызгивание (строительного) материала или послойное струйное нанесение строительного материала;

3. Binder Jetting - разбрызгивание связующего или послойное струйное нанесение связующего материала;

4. Sheet Lamination - соединение листовых материалов или послойное формирование изделия из листовых строительных материалов;

5. Vat Photopolymerization - фотополимеризация в ванне или послойное отверждение фотополимерных смол;

6. Powder Bed Fusion - расплавление материала в заранее сформированном слое или последовательное формирование слоев порошковых строительных материалов и выборочное (селективное) спекание частиц строительного материала;

7. Directed energy deposition - прямой подвод энергии и материала непосредственно в место построения или послойное формирование изделия методом внесения строительного материала непосредственно в место подвода энергии.

Приведенный в работе материал касается, преимущественно, технологий шестой и седьмой групп, относящихся к производству изделий из металлов и сплавов. Этот сегмент АП развивается наиболее интенсивно, ориентирован на производство конечной продукции и представляет наибольший интерес для машиностроения .

Сравнительная характеристика аддитивных и субтрактивных технологий размерного форомообразования

Согласно классификатору методов размерного формообразования , по характеру трансформации исходного объема заготовки в объем детали все существующие методы и технологии на их основе разделяют на четыре класса (табл. 1).

Таблица 1. Классы методов обработки по характеру трансформации исходного объема заготовки

Класс Описание класса Название Примеры технологий
1 В процессе обработки объем заготовки не изменяется по величине, но перераспределяется в пространстве. Методы перераспределения объема.
Redistributive methods.
Ковка, штамповка, гибка.
2 Объем изделия поучают путем удаления «лишнего» объема заготовки. Методы удаления части объема заготовки.
Subtractive methods.
Обработка резанием лезвийным или абразивным инструментом, химическое растворение.
3 Объем изделия получают добавлением материала к исходной заготовке или нанесением материала на технологическую подложку. Методы наращивания объема изделия.
Additive methods.
Гальваника, газотермическое напыление, селективное лазерное спекание или плавление, лазерная стереолитография. лазерное осаждение металла из порошка.
4 Изделие получают одновременным или последовательным удалением материала с одной части заготовки и нанесением его на другую. Комбинированные (интегрированные) методы формирования объема изделия.
Combined (integrated) methods.
Некоторые способы электрохимической обработки, модификации метода химических транспортных реакций, интеграция металлорежущих станков с ЧПУ с лазерной головкой и пр.

Наибольшее распространение получили методы формообразования второго и третьего классов, на которых основаны так называемые субтрактивные и аддитивные технологии.

Технологии второго класса превалировали и будут превалировать в обозримом будущем в машиностроительном производстве. Однако в 80–90-х годах прошлого века в связи с развитием и удешевлением цифровых технологий, появлением прецизионных мехатронных приводов, совершенствованием лазерной техники и другими факторами аддитивные методы и технологии размерного формообразования совершили качественный скачок и стали конкурентоспособными с классическими технологиями обработки со снятием стружки (табл. 2).

Таблица 2. Сравнительная характеристика технологий второго и третьего классов

Свойства (характеристики) технологии класс по табл. 1
2 3
1 Возможность достижения высокой точности (10^(−7) м) методом последовательных приближений. Выше + Ниже
2 Возможность формирования специальных свойств поверхностного слоя. Выше + Ниже
3 Производительность и низкая себестоимость в условиях крупносерийного и массового производства. Выше + Ниже
4 Развитый парк технологического оборудования. Есть + Нет
5 Высокий уровень унификации и стандартизации изделий и средств технологического оснащения. Есть + Нет
6 Возможность применения развитого и апробированного теоретического аппарата технологии машиностроения. Выше + Ниже
7 Уровень развития программного обеспечения (CAD/CAM/CAE). Выше + Ниже
8 Номенклатура методов, способов и технологических операций. Шире + Уже
9 Наличие развитой нормативно-справочной базы. Есть + Нет
10 Развитая система производства и поставки исходных материалов (за- готовок). Есть + Нет
11 Количество единиц технологического оборудования в ТП. Больше Меньше +
12 Затраты на логистику, складские и транспортные работы. Выше Ниже +
13 Затраты на оснастку и инструменты. Больше Меньше +
14 Занимаемые производственные площади. Больше Меньше +
15 Затраты на сборку-разборку отдельных сборочных единиц. Выше Ниже +
16 Длительность цикла и стоимость технологической подготовки производства новых изделий. Выше Ниже +
17 Технологическая надежность (вероятность отказа (брака), как правило, снижается с уменьшением числа операций в ТП). Ниже Выше +
18 Затраты трудовых ресурсов. Выше Ниже +
19 Коэффициент использования материалов. Ниже Выше +
20 Возможность получения изделий с градиентным составом и свойствами. Ниже Выше +
21 Степень сложности изготавливаемых изделий. Ниже Выше +
22 Технологическая возможность минимизации массы изделия при заданных показателях прочности и жесткости. Ниже Выше +
23 Возможность сокращения номенклатуры деталей в изделии. Ниже Выше +
24 Функциональная надежность конструкции. Ниже Выше +
25 Количество (номенклатура) операций ТП. Больше Меньше +
26 Степень гибкости производства. Ниже Выше +

Как видно, АТ обладают рядом достоинств и недостатков по отношению к классическим субтрактивным технологиям. Математическим инструментом для выявления области их эффективного практического применения является аппарат и численные средства многопараметрической оптимизации .

Определяющими факторами применения АТ, выступающими в качестве главных критериев их выбора, являются существенное сокращение длительности технологической подготовки производства новых изделий, сокращение цикла их изготовления, возможность использования принципиально новых конструкторско-технологических решений, снижение, в конечном счете, трудоемкости и себестоимости изготовления ответственной продукции. Степень гибкости аддитивных технологий достигает уровня кастомизации, то есть, способности удовлетворять индивидуальные требования потребителей продукции.

Статистический анализ развития аддитивных технологий

Наиболее авторитетным источником информации о состоянии и развитии АТ, признанным мировым технологическим сообществом, является консалтинговая компания Wohlers Associates Inc. (WAI), издающая c 1996 года ежегодные статистические отчеты (Wohlers Report) (www.wohlerassociatrs.com). Согласно Wohlers Report-2014, мировой объем рынка продукции и услуг к 2013 году достиг 3 млрд долл. (рис. 1). Среднегодовой прирост рынка ∆р за 26 лет составил 27 %. Прогнозируется увеличение объема рынка от 3,07 в 2013 до 21 млрд долл. в 2020 году. В предыдущем отчете (2013 г.) объем рынка в 2012 оценивался в 2,26 млрд долл. с прогнозом объема рынка 10,8 млрд долл. на 2021 году (рис. 2).

Рис. 1. Динамика мирового объем продукции АП в 1993–2013 годах

Рис. 2. Прогноз развития мирового объема АП продукции и услуг (млд. Долл.)

Около 40 % рынка продукции и услуг в 2013 году приходилось на оборудование и материалы и 60 % - на услуги и производство продукта (рис. 3).

Рис. 3. Прогноз динамики структурных составляющих мирового рынка продукции и услуг АП (млд. долл.)

Статистические данные WAI приводятся во многих работах, посвященных АТ , однако методика прогнозирования нигде не обсуждается, хотя ее влияние на достоверность прогнозов является определяющим. На основе имеющихся статистических данных возможны два основных подхода к краткосрочному прогнозированию.

Первый из них основан на гипотезе об относительной устойчивости величины среднегодового прироста ∆р мирового рынка продукции и услуг АП. Принимая на ближайшие 10 лет ∆р = const, прогнозируемый объем рынка Р можно описать выражением вида

Р = Р0 (1 + ∆р)^(n–1) = Р0 1,27^(n–1), (1)

где Р0 - объем рынка в 2013г., n - порядковый номер последующего года, начиная с 2013 (2013 г. принят за 1). Расчет дает 20,3 млрд долл. в 2021 году. По данным Wohlers Report-2014, прогнозируется увеличение рынка до 21 млрд долл. (рис. 2), что близко к значению, полученному по выражению (1). По данным некоторых других источников эта цифра значительно выше. Это означает, что в этих источниках прогнозируется увеличение не только объема рынка АП на указанный период, но и среднегодового прироста этого объема.

Второй подход базируется на гипотезе, широко используемой в наукометрии и заключающейся в том, что скорость увеличения объема знаний в некоторой новой быстро развивающейся области науки и техники пропорциональна текущему значению этого объема , то есть

где V - текущий объем знаний, k - коэффициент пропорциональности.

Решение уравнения (2) имеет вид

V =V0exp kt, (3)

где V0 - объем знаний в начальный момент времени t.

В первом приближении без учета инерционных процессов можно считать, что объем рынка изменяется подобно объему знаний.

Анализируя с этой точки зрения статистические данные (рис. 1) (без учета 2013 г.) и принимая в качестве точки отсчета 1993 г. (объем рынка V0 принят 0,09 млрд долл.), находим k = 0,17 и выражение (3) преобразуем к виду

V = 0,09 · 1,19^(n–1). (4)

Таким образом, выражение (1) является частным случаем (3). Однако, среднегодовой прирост в нашем расчете 19 %, что заметно ниже 27 %. Расчет дает для 2020 года 9,86 млрд долл., что хорошо согласуется с предыдущим прогнозом WAI (рис. 2).

Из рис. 3 видно, что соотношение долей отдельных компонентов мирового рынка АП перераспределяется в сторону увеличения доли реализуемой продукции. Заметна тенденция ускоренного развития сегмента рынка АП, связанного с непосредственным изготовлением изделий из металлов и сплавов (рис. 4), быстро растет спрос на соответствующее оборудование. Отмечается тенденция к увеличению доли конечного продукта в товарной продукции АП (рис. 5).

Рис. 4. Динамика продаж оборудования для АП металлических изделий

Рис. 5. Динамика доли конечной продукции (%) на рынке АП

Рис. 6. Использование оборудования для АТ мировым технологическим сообществом

Уровень развития АТ в различных странах мира характеризуется количеством установленных единиц соответствующего оборудования (рис. 6). Видно, что на долю США приходится (2013 г.) 38 % мирового парка машин, в то время, как на долю России - 1,4 % (преимущественно машины для лазерной стереолитографии).

Статистические данные WAI раскрывают основные технологические задачи, для решения которых используют АТ:

  •  визуализация – 10,4 % (16,8 % в 2004 г.);
  • презентационные модели - 9,5 % (в 2004 г.);
  • контрольные сборки - 17,5 % (11,4 % в 2004 г.);
  • мастер-модели для изготовления оснастки - 11,3 % (10,6 %);
  • мастер-модели для литья металлов - 10,8 % (8,1 %);
  • компоненты инструментальной оснастки - 4,8 % (6,9 %);
  • функциональные детали - 28,1 % (16,4 %) в том числе - конечное изделие - 19,2 % (8,2 % в 2004 г.);
  • в обучении и исследованиях - 6,4 %;
  • другие задачи - 1,3 %.

Совершенно очевидно, что промышленные успехи в области АП связаны и определяются созданием и быстрым развитием соответствующей области знаний. На рис. 7 показана динамика расширения числа научных публикаций и числа цитирований в этой области знаний. Данные приведены в Wohlers Report-2014, поэтому 2014 год отражен не полностью.

Рис. 7. Динамика числа публикаций (слева) и числа цитирований за двадцать лет

Статистика получена путем поиска публикаций и цитирований с ключевой фразой additive manufacturing. Несмотря на то, что далеко не все публикации по рассматриваемой тематике были учтены, приведенную статистику следует рассматривать, как достоверную выборку в связи с распространенностью ключевого термина. Можно показать, что развитие научных знаний в области АТ соответствует экспоненциальному закону и количество новых знаний прогрессивно нарастает.

Отметим, что количество российских публикаций по вопросам АП составляет всего 0,76 % от общемирового. Россия занимает 26-е место в мире, разделяя его с Грецией, Израилем, Финляндией и Польшей. За последние 15 лет в России был выдан 131 патент по различным аспектам АП (0,14 % от мирового количества), причем 14 из них получены российскими заявителями, а 117 - иностранными. Для сравнения, Южная Корея, США, Япония и Китай совместно владеют 90 % патентов в этой сфере.

Аддитивные технологии в производстве авиакосмической техники

В производстве авиакосмической техники аддитивные технологии обеспечивают следующие основные преимущества:

1. Стоимость вывода 1 кг массы на орбиту Земли составляет от 12 до 25 тыс. долл. Поэтому возможность снижения массы изделия за счет повышения его конструктивной сложности является весьма актуальной для ракетно-космического машиностроения.

Анализ, проведенный в рамках проекта ATIKINS, показал, что снижение массы магистрального самолета на 100 кг на протяжении всего жизненного цикла влечет за собой экономию $2,5 млн на топливных расходах и сокращает выбросы углекислого газа на 1,3 млн  тонн.

Однако степень усложнения конструкции изделия ограничивается возможностями существующих методов, технологий на их основе и средств технологического оснащения. Так, аддитивные технологии обеспечивают получение системы полостей произвольной формы в теле детали, а субтрактивные - нет. Поэтому в последнем случае приходится использовать дорогостоящие заготовительные технологии с относительно низким уровнем технологической надежности и удорожанием производства из-за брака. В качестве примера рассмотрим одну из основных, лимитирующих деталей газотурбинного двигателя - лопатку турбины (рис. 8).

Рис. 8. Сечения лопатки турбины ГТД

Лопатку с сечениями, формирующими магистраль подачи охлаждающего воздуха, получают литьем по выплавляемым моделям. Отверстия для входа воздуха на передней кромке лопатки изготовляют малопроизводительным электроэрозионным прошиванием с последующей доводкой абразивной суспензией. К настоящему времени созданы опытно-экспериментальные образцы лопаток с применением SLS и SLM - технологий. Обсуждается вопрос о ремонте лопаток турбин с применением АТ.

2. Коэффициент использования материала (КИМ) при традиционном производстве основных деталей двигателей авиакосмической техники составляет 0,05–0,2. Применение АТ позволяет повысить этот коэффициент до 0,7–0,9, что обеспечит значительное сокращение затрат на дорогостоящие материалы. Значение КИМ при изготовлении металлических деталей с применение АТ определяется, главным образом, массой поддержек, подлежащих удалению (рис. 9).

Рис. 9. Вариант конструкции поддержек соединительного блока

3. Сокращение длительности цикла и стоимости технологической подготовки производства новых изделий имеет первостепенное значение, особенно в опытно-экспериментальном производстве. С развитием АТ опытно-конструкторские организации могут не только осуществлять быстрое натурное моделирование составных частей опытного изделия, но и значительно ускорить как изготовление сложных деталей, так и введение изменений в их конструкции в процессе доводки и испытаний изделия. Так, по данным ОАО КБХА применение АТ при изготовлении 5 основных деталей двигателя позволяет в среднем сократить цикл изготовления в 5 раз.

4. Замена сборочной единицы деталью одного наименования повысит надежность составной части изделия и также сократит цикл ее изготовления. Так, на рис. 9 показан соединительный блок, который при традиционном исполнении представляет собой сборочную единицу, состоящую из 8 наименований деталей.

АП смесительной головки позволяет сократить число наименований деталей с 138 при классической технологии до 1–3 при АП.

5. Основные детали горячей части двигателей современных летательных аппаратов, работающие, как правило, в экстремальных условиях, изготавливают из материалов с низкой обрабатываемостью резанием, поэтому понятен интерес создателей ГТД и ЖРД к АТ, позволяющим в ряде случаев снизить трудоемкость и себестоимость технологии. Так, компания GE Aviation часть деталей нового двигателя LEAP производит с применением АТ (рис. 10).

Рис. 10. Двигатель LEAP компании GE Aviation

Производство авиакосмической техники характеризуется, как правило, единичным и серийным (мелко- и среднесерийное) типами производств. Поэтому при выборе альтернативных технологий следует учитывать степень их гибкости. Гибкость технологий аддитивного формообразования выше, чем традиционных, поскольку при переходе на новую деталь нет необходимости подготавливать новую заготовку и средства технологического оснащения. АТ-технологии эффективны при обработке относительно малых партий изделий, когда высокая стоимость материалов компенсируется снижением постоянных затрат, связанных с традиционными технологиями (рис. 11). Как видно, 42 единицы - тот размер партии самолетных шасси, при котором себестоимость изготовления методом литья под давлением и селективного лазерного спекания одинакова .

Рис. 11. Критический размер партии деталей, определяющий рентабельность АТ

Доля аэрокосмической отрасли на мировом рынке аддитивных технологий составляет около 12 % (2013 г.) и имеет тенденцию к росту . Некоторые детали авиационно-космической техники, изготовленные с привлечением АТ, показаны на рис. 12.

а) крыльчатка

б) лопаточный ротор

в) охлаждающий элемент

г) лопатка турбины

д) топливная форсунка

е) элементы СПТ

Рис. 12. Изделия авиационно-космической техники, полученные с применением АТ

Рассмотрим состояние дел с практическим внедрением АП в авиационно-космическую индустрию промышленно развитых странах мира .

Впервые о полномасштабном внедрении АТ сообщила корпорация General Electric (GE). Это привело к возрастанию в 2012 году стоимости ее акций с 19.87 до 23 долл. за акцию. Такая реакция рынка привела к вовлечению в инновационный процесс АП ряда других компаний (Siemens, Mitsubishi и др.).

В 2013 году в подразделении GE Aviation была создана лаборатория Additive Lean Lab, которая занялась внедрением аддитивного производства в АПК. К 2016 году лабораторией подготовлены условия для промышленного изготовления топливных форсунок двигателей нового поколения LEAP самолетов Airbus A320 NEO, Boeing 737MAX и COMAC C919 (www.voxelfab.com). Используя АП, GE может производить до 25 000 форсунок в год (комплект форсунок на двигатель - 19 шт.). Согласно прогнозу специалистов GE Aviation, в ближайшем будущем половина всех деталей современных авиадвигателей будет изготавливаться с применением АТ.

При помощи SLM-технологии изготовлен и успешно протестирован инжектор двигателя для ракеты RL-10. Центр космических полетов им. Дж. Маршалла (Хантсвилл) и компания Directed Manufacturing провели огневые испытания инжектора, разработанного по государственной американской программе сверхтяжелого ракетоносителя (РН) для пилотируемых полетов Space Launch System (SLS). Был представлен самый большой компонент РД, изготовленный средствами АП, состоящий из двух частей, в то время как похожие инжекторы включают в себя 115 деталей. При экстремальных условиях были проверены свойства материала инжектора (сплав никеля и хрома).

Другим инновационным подходом создания АТ-технологий является метод прямого лазерного спекания металла (DMLS), разработанный крупнейшей компанией EOS. С его помощью компания Space Exploration Technologies Corp. (SpaceX) изготовила методом послойного синтеза камеру сгорания двигателя SuperDraco (рис. 13) многоразового космического корабля (КК) Dragon, что позволило получить тягу 7257 кГ.

Рис. 13. Испытания двигателя с КС (компания SpaceX)

Камера сгорания (КС) является ключевым лимитирующим элементом ЖРД. Поэтому ряд компаний проводят интенсивные работы по внедрению аддитивных технологий в производство КС. Так, европейский аэрокосмический концерн Airbus Group подтверждает возможность снижения себестоимости при использовании технологии DMLS для производства конструкций сложной геометрической формы типа КС в условиях единичного или мелкосерийного производства.

Снижение массы и улучшение аэродинамического качества деталей летательных аппаратов, характерные для применения АП, приводят к экономному расходу топлива (на 15%) и снижению уровня загрязнения окружающей среды (на 3%) (по данным компаний Snecma и GE Aviation). Специалисты Института физики атмосферы космического агентства Германии (IAP DLR) показали, что подобное сокращение выбросов в атмосферу сэкономит авиакомпаниям до 1 млн долл. ежегодно. Помимо этого, в АТ деталей планируется использовать новый керамический композиционный материал, который позволит работать при более высоких температурах.

Метод DMSL активно используется при изготовлении спутников. Инженеры Airbus Defence and Space (подразделения Airbus Group) применили метод для оптимизации конструкции кронштейнов, связывающих корпус спутника с солнечными батареями и радиоантеннами. Созданные на установке EOSINT M 280 детали соответствовали требуемым техническим условиям: выдерживать силовую нагрузку до 20 кН в температурном диапазоне от –180 °C до +150 °C. В дополнении к техническим характеристикам АП позволило на 20 % сократить расходы на производство и трудоемкость изготовления кронштейнов.

Компанией RedEye этим же методом изготовлены топливные баки для спутников Lockheed Martin Space Systems с двухкратным снижением расходов на их производство.

Развитием инновационных аддитивных технологий интересуются не только отдельно взятые компании. Как показывает практика, интерес к 3D-печати получил статус государственного значения в мире, поэтому каждое космическое агентство считает стратегически необходимым использовать его в производстве космической техники (КТ). Европейское космическое агентство (ESA) объявило о запуске проекта AMAZE, целью которого является АП металлических частей для космических кораблей, двигателей самолетов и ракет. Проводятся работы по созданию и доводке космического спутника, собранного полностью из таких частей.

В 2014 году 3D-принтер компании Made In Space доставлен на Международную космическую станцию (МКС) для создания деталей КТ в условиях невесомости. По мнению специалистов есть реальная возможность изготавливать на орбите до 30% запчастей.

С 2016 года на орбите функционирует спутник российского производства, изготовленный с применением АТ специалистами Томского научного центра.

В январе 2014 года совершил первый полет истребитель Tornado GR4 военно-воздушных сил Великобритании, при изготовлении которого использованы металлические детали, изготовленные компанией Rolls-Royce с привлечением АТ. На основе успешных испытаний принято решение о серийном производстве части запчастей для британских истребителей с применением АТ. Показано, что это позволит экономить до 0,3 млн фунтов стерлингов в год.

Технологии послойного наложения расплавленной полимерной нити (Fused Deposition Modeling - FDM) позволяет использовать материалы производственного класса для изготовления деталей, работающих в условиях воздействия агрессивной среды и высоких температур. Среди продукции, созданной по данной технологии, особо важной для ОПК считается изготовление боевых беспилотных летательных аппаратов (БЛА) и учебных «дронов». К конкретным примерам относятся кронштейны видеокамер для наступательных БЛА Taranis компании BAE Systems (www.defensetech.org), антенны и «дроны» двойного назначения RDASS 4 компании Leptron. В 2014 году БЛА, построенный по технологии FDM, представлен специалистами Шеффилдского университета (рис. 14, а).

Рис. 14. Беспилотный летательный аппарат, созданный на основе АТ

Подобные работы проводятся и в нашей стране. ОАО «КБ «Луч», входящим в состав государственной корпорации «Ростех», создан экспериментальный образец беспилотного летательного аппарата, планер которого изготовлен с использованием аддитивных технологий (рис. 14, б). Возможности аддитивного производства обеспечили значительную экономию финансовых средств и времени на создание финального образца беспилотной авиационной техники, а также перспективы изготовления (восстановления повреждений) непосредственно в районе боевых действий.

Следует отметить, что в авиакосмической промышленности широко используются и в ряде случаев являются критическими технологии, аддитивные по своей сути, которые практически не обсуждаются и не рассматриваются в работах по аддитивной тематике. Это технологии, связанные с намоткой изделий из углеродного, стеклянного, полимерного волокна на многошпулечных намоточных машинах с пропиткой связующим веществом и последующим отвердеванием .

Заключение

В производстве авиационнокосмической техники проявляется повышенный интерес к применению АТ. Ведущие компании мира проводят широкий круг НИОКР в этой области, появились промышленные образцы изделий АП, начат серийный выпуск ряда наименований деталей, прогнозируется расширение сферы их эффективного применения. Сдерживающими факторами являются высокие цены на материалы, оборудование, сложная и длительная процедура сертификации продукции.

Моргунов Ю. А., Саушкин Б. П., Московский политехнический университет

Литература:

1. Зленко М. А., Попович А. А., Мутылина И. М. Аддитивные технологии в машиностроении. - С.-Пб.: Издательство С.-Пб. политехнического университета. 2013. - 222 с.
2. Шишковский И. В. Основы аддитивных технологий высокого разрешения. - СПб.: Изд-во Питер, 2015. - 348 с.
3. Гибсон Я., Розен Д., Стакер Б. Технологии аддитивного производства. Пер. с англ. Под ред. И. В. Шишковского - М.: Техносфера, 2016. - 656 с.
4. Additive fabrication terminology unraveled. www.additive3d.com\nm_01.htm.
5. ASTM Additive manufacturing committee approves terminology standard. Электронный ресурс: www.astmnewstroom.org/default.aspx?pageid=1944.
6. W. E. Frazier, Metal Additive Manufacturing: A Review, J. Mater. Eng. Performance, 23 , 1917–1928 (2014).
7. Наукоемкие технологии машиностроительного производства. Физико-химические методы и технологии/Под ред. Б. П. Саушкина. - М.: Форум. 2013. - 920 с.
8. Публичный аналитический доклад по развитию новых производственных технологий/Сколковский Институт науки и технологий, 2014. - 202 с.
9. Михайлов Ю М. Перспективы использования аддитивных технологий в ОПК. 2015. Электронный ресурс: federal book.ru/OPK-11/111/Mihaylov. pdf.
10. Новый справочник химика и технолога/Под ред. А. В. Москвина/Раздел 8. Саушкин Б. П. Основы технологии. - СПб.: НПО «Профессионал», 2006. - 1464 с.
11. E. Atzeni and A. Salmi, Economics of Additive Manufacturing For End-Usable Metal Parts, Int. J. Adv. Manuf. Tech., 62 , 1147–1155 (2012).
12. Сироткин О. С. Современное состояние и перспективы развития аддитивных технологий/Авиационная промышленность. 2015, 2. - С. 22–25.
13. Чумаков Д. М. Перспективы использования аддитивных технологий при создании авиационной и ракетно-космической техники/Электронный журнал «Труды МАИ». Выпуск № 78 www.mai.ru/science/trudy/.
14. Исаченко В. А., Астахов Ю. П., Саушкин Б. П. Технологии ракетно-космического машиностроения - проблемы и перспективы/Технология машиностроения, 2016, № 1. - С. - 10–14.
15. Панов Д. В., Саушкин Б. П. Коротков А. Н. Композиты и станки для их обработки/Ритм, 2014, 7. - С. 32–36

Среди технологий, постоянно появляющихся в жизни человека благодаря достижениям научного прогресса, существуют и такие, которые носят название «аддитивных». Это определение произошло от заимствованного слова «аддитивность», или, если быть точнее, от английского словосочетания «additive manufacturing» (сокращенно – AF), которое дословно переводится как «прибавляемое производство». Так что же это такое, и чем данный вид технологий может быть полезен обществу сегодня?

Сущность

Аддитивные технологии являются отраслью цифровой промышленности и представляют собой такой метод производства изделий и различных продуктов, при котором происходит наращение слоев объекта посредством использования компьютерных устройств для 3D-печати. Что же за материалы их заполняют? Обычно это воск, металлические и гипсовые порошки, полистирол (бесцветный и стеклообразный полимер, напоминающих пластик), полиамиды (пластмассы), жидкие фотополимеры (заготовки, затвердевающие под воздействием световых лучей, чаще всего ультрафиолетовых) и пр.

Возникновение: как это было

История аддитивных устройств началась в 1986 году, когда один из представителей компании «Ultraviolet Products» по имени Чарльз Халл (ныне исполнительный вице-президент и главный технический директор собственной организации «3D Systems») сконструировал первый в мире стереолитографический принтер для трехмерной печати. Механизм был произведен главным образом для обеспечения оборонного комплекса США своевременными поставками. Халл обратил внимание на то, что для создания отдельных деталей и их последующей сборки требуется большое количество времени и сил. Поэтому он решил не только прибегнуть к помощи ультрафиолетового излучения, но и осуществить задуманное максимально рационально. Так, мужчина сначала наложил друг на друга несколько тысяч слоев пластика, а уже потом закрепил их одной ультрафиолетовой обработкой.

Позднее Чарльз покинул обанкротившуюся фирму «UVP», но останавливаться на разработке собственного детища не пожелал, – он запатентовал техническое изобретение в 1983 году и лично основал компанию, которая затем разрослась до масштабов настоящей корпорации. Сегодня «3D Systems» является одним из ключевых участников рынка принтеров, изделий и программного софта для создания объемной продукции.

Последующее развитие аддитивные технологии получили благодаря товарищам-студентам из Массачусетского технологического института. В 1993 году Джим Бредт и Тим Андерсон решили качественно дополнить уже существующие наработки собственными идеями, а потому взяли и модифицировали обычный 2D принтер в устройство для 3D печати. В модернизированном устройстве применялись не листы бумаги, а похожий на клей специальный жидкий состав, который разбрызгивался по тонким слоям основного наполнителя (полимерного, металлического или гипсового порошка) и затвердевал. Бредт и Андерсон подарили AF мировую известность, ведь сделали их более ходовыми и универсальными. В 1995 году друзья организовали собственную организацию «Z Corporation», успехи которой не остались без внимания «3D Systems», – в 2012 году она приобрела более мелкую, но не менее перспективную компанию, и их передовые проекты начали выходить в свет под общим логотипом.

Назначение и применение

Все это означало только одно – вступление в новую эру, качественное изменение многих производственных сфер и упрощение организационных процессов! Например, в автомобильной промышленности значительно ускорился этап разработки прототипов, ведь почти все комплектующие, будь то мощные двигатели или обыкновенные кнопки и рычаги, начали создаваться с полным или частичным использованием технологии 3D печати.

Кроме того, компании стали существенно экономить, ведь теперь производство:

  • больше не требовало наличия такого разнообразного инструментария, как прежде;
  • могло осуществляться при контроле меньшего количества сотрудников. По сути, для правильного создания детали оказывается достаточного 1-2 инженеров. Главное, что от них требуется – это полные и всесторонние знания проектирования и дизайна технических конструкций, а также понимание особенностей работы с AF установками.

Активно применяются подобные принтеры и… в медицине! Это может показаться невозможным, но даже на современном этапе трехмерные изделия используются как заменяющие и реконструирующие элементы, например, когда речь идет о челюстно-лицевой хирургии. В марте 2018 года в Манчестере была открыта клиника, специализирующаяся на выпуске стержней, протезов и пластин на 3D принтерах, которые заполняются пластмассовыми или металлическими смесями. Несмотря на то, что одна только установка модели «PolyJet» обошлась больнице в $42000, согласно подсчетам руководства, вложение в собственную лабораторию объемной печати окупится быстрее, чем постоянное обращение к посредникам. Сотрудники клиники прогнозируют, что уже через 5 лет подобные центры станут обязательными при лечебных и реабилитационных заведениях, особенно если они занимаются онкологическими, ортопедическими, неврологическими и ревматологическими заболеваниями.

Интересный факт! AF используются и для изготовления искусственных конечностей.

Пробная программа, начатая в 2017 году в столице Иордании, не только продолжает набирать обороты, но и демонстрирует положительные результаты. В Аммане осуществляется лечение людей, бежавших от военных действий в Сирии, Йемене и Ираке. Так, уже 5 добровольцев обзавелись «напечатанными» протезами, которые, во-первых, обошлись им намного дешевле обычных (порядка $20 против сотен долларов), и, во-вторых, были произведены с учетом индивидуальных особенностей и параметров тела.

Аддитивные технологии покоряют и другие сферы: это архитектура, авиастроительство, производство спортивного снаряжения и товаров для детей… Спектр их применения расширяется, а эксперты в один голос прочат этому направлению перспективное и радужное будущее с притоком инвестиций, возрастанием спроса на компетентную рабочую силу и повышением зарплат.

Подробнее о некоторых типах АТ

Не лишним будет упомянуть и о том, как происходит создание объемного продукта в каждом конкретном случае. Самыми популярными методами в аддитивном производстве являются:

  1. Fused deposition modeling, FDM – моделирование методом послойного наплавления. Объект конструируется согласно заложенной в программное обеспечение математической цифровой модели из специальной пластиковой нити (лески), которая расплавляется до определенной температуры, а потому становится достаточно гибкой для приобретения нужной формы. Вспомогательные конструкции удаляются вручную или благодаря растворению в специальной жидкости, а готовое изделие либо оставляется в напечатанном виде, либо подвергается пост-обработке (покраска, полировка, шлифовка, склеивание и пр.). Произведенные детали всегда отличаются хорошими характеристиками, такими как износоустойчивость и термостойкость.

  1. ColorJetPrinting, CJP. Суть этой продвинутой технологии заключается в использовании композитного порошка на основе гипса и пластика, который не только подвергается послойному склеиванию, но и окрашиванию в самые разные цвета палитры CMYK, включающей до 390 000 оттенков! Пока возможность цветной печати предоставляет исключительно CJP. Кроме этого, данная АТ также делает возможным воспроизведение на поверхности продукции различных текстур в высоком разрешении. Несмотря на среднюю прочность и незначительную шероховатость конечных изделий, ColorJetPrinting, характеризующаяся низкой себестоимостью, активно применяется для создания архитектурных макетов, фигурок людей в миниатюре, презентационных образцов и других наглядных объектов.

  1. SelectiveLaserStering, SLS – селективное лазерное спекание. Здесь порошковые материалы (пластики и полиамиды) спекаются лазерным лучом. Такой метод одновременно подходит и для крупных промышленных изделий, и для объектов со сложной геометрией и детальной структурой, и для партий, которые выпускаются за 1 печатную сессию. Технологию SLS нередко путают с SelectiveLaserMelting, или SLM. Разница между ними заключается в том, что в первом случае сплавление оказывается частичным и осуществляется лишь по поверхности частиц, в то время как во втором результат – это получение цельного монолита.

Конференции в России

Национальный рынок АТ в России развит еще недостаточно. Потенциал сферы не раскрывается из-за дефицита кадров, недостатка материала и оборудования и отсутствия должной программы государственной поддержки.

И все же некоторые учреждения стараются собственными силами способствовать знакомству российского общества с передовыми достижениями AF. Одной из таких организаций является Всероссийский научно-исследовательский институт авиационных материалов (ВИАМ), представители которого ежегодно устраивают тематические конференции, посвященные аддитивным технологиям. Со своими докладами выступают отечественные и зарубежные ученые и работники промышленной сферы, заинтересованные в замене традиционных форм производства инновационными методами. В этом году мероприятие, состоявшееся 30 марта, стало уже 4 по счету. Принять участие в конференции, которая прошла под лозунгом «Настоящее и будущее», смогли участники, подавшие предварительные заявки.

Аддитивные технологии находят активное применение в энергомашиностроении, приборостроении, авиационной промышленности , космической индустрии, там, где высока потребность в изделиях сложной геометрии. В России с аддитивными технологиями познакомилось уже немало предприятий. Предлагаем вашему вниманию материал из альманаха «Управление производством» , в котором описывается несколько примеров эффективного внедрения 3D-печати.

Аддитивные технологии открыли возможность изготовления деталей любой сложности и геометрии без технологических ограничений. Геометрию детали можно менять еще на стадии проектирования и испытания.

Подготовка файлов для печати осуществляется на компьютерах со стандартным программным обеспечением , в работу принимаются файлы формата STL. Это широко используемый сегодня формат хранения трехмерных объектов для стереолитографических 3D-принтеров. Инвестиции в проект составили порядка 60 млн рублей.

Александр Зданевич, ИТ-директор НПК «Объединенная Вагонная Компания»: «Технологии аддитивной печати прогрессируют, и, вероятнее всего, уже в ближайшем будущем они изменят лицо целого ряда индустрий. Главным образом это касается предприятий, на которых выпускаются штучные товары под конкретный заказ. С массовым производством дело обстоит сложнее, хотя разные типы 3D-принтеров уже сейчас находят применение в данной области.


Существует множество технологий объемного синтеза. Одной из перспективных для промышленного внедрения является . Процесс можно разделить на два этапа. На первом формируется слой построения в виде равномерно распределенного по поверхности рабочей платформы жидкого фотополимера . Затем происходит выборочное отверждение участков данного слоя в соответствии с текущим сечением построенной на компьютере 3D-модели.

Применительно к железнодорожному машиностроению данную технологию можно использовать на этапе подготовки литейного производства, в частности, при производстве комплекта литейной оснастки. Один и тот же комплект оснастки, уникальный под каждую отливку, используется на протяжении тысяч циклов производства соответствующих литейных форм.

От соблюденной в процессе изготовления комплекта оснастки точности всех предусмотренных конструкторами параметров напрямую зависит качество конечного изделия. Традиционный способ изготовления комплекта оснастки путем механической обработки материалов (металла, пластика, иногда и дерева) весьма трудоемок и длителен (подчас занимает до нескольких месяцев), при этом чувствителен к ошибкам.

В «отпечатанные» модели можно встроить и другие узлы и агрегаты. Трехмерная печать полностью окупается за счет высокой скорости изготовления прототипов, а также за счет «доработки на столе» прямо в ОГК, которая экономит уйму времени и денег, нежели изготовление натурных образцов в «железе» на производстве.

Значительную работу по продвижению аддитивных технологий проводит Госкорпорация «Росатом» . Руководство уверено, что скоро в госкорпорации будут присутствовать все компоненты «цифрового производства» – от разработки материалов, оборудования, технологий до производства изделий. В отрасли реализуется программа по аддитивным технологиям, она состоит из подразделов: технология, сырье, оборудование, стандартизация. Разработкой технологий производства металлических порошков для 3D-печати в Росатоме занимаются три института: «Гиредмет», ВНИИХТ, ВНИИНМ. Одновременно ведется работа по созданию опытного образца 3D-принтера для трехмерной печати металлических и композитных изделий. Росатом планирует представить образец уже к концу 2017 года.

Трехмерная печать полностью окупается за счет высокой скорости изготовления прототипов, а также за счет «доработки на столе» прямо в ОГК, которая экономит уйму времени и денег, нежели изготовление натурных образцов в «железе» на производстве.

«К началу 2018 года мы должны весь цикл по аддитивным технологиям внутри Росатома замкнуть. Нам нужен еще год, чтобы запустить свой собственный пилотный образец установки, и примерно столько же – для того, чтобы договориться со всеми сторонами, которые обеспечивают используемую нормативную составляющую», – рассказал Алексей Дуб.

В структуре Росатома аддитивные технологии развиваются в топливной компании «ТВЭЛ», которая активно сотрудничает с созданным при УрФУ региональным инжиниринговым центром, работая над созданием российского 3D-принтера. Для Уральского электрохимического комбината и его предприятий порошковая металлургия не новинка. Например, на заводе электрохимических преобразователей порошки применялись при производстве фильтров для газовой диффузии урана при разделении изотопов, также для припоев и поверхностного напыления.

В научно-образовательном центре «Современные производственные технологии» Томского политеха

Одним из первопроходцев в области лазерных принтеров можно назвать научно-образовательный центр «Современные производственные технологии» Томского политехнического университета . Он укомплектован принтером электронно-лучевого сплавления (электронно-лучевым), лазерным принтером, принтерами, печатающими армированными композитами, а также ультразвуковым томографом, осуществляющим здесь же, «у станка», неразрушающий контроль готовых изделий. Специалисты центра изготавливают АМ-установки, разрабатывают программное обеспечение к ним и намерены продвинуться дальше «лаборатории».

В центре аддитивных технологий ТПУ настроен весь производственный цикл – от идеи до реализации готового изделия. Можно произвести и протестировать детали для обшивки космических кораблей, импланты для черепно-лицевой хирургии, изделия сложной формы для и многое другое, а также создать новые цифровые установки, например, для печати инструментов на МКС. «С помощью наших уникальных технологий мы можем создавать импортозамещающую продукцию, которая в разы дешевле импортных аналогов, при этом по качеству не хуже», – уверен директор центра Василий Федоров.

У развития аддитивных технологий есть и сдерживающие факторы.

  • Во-первых, высокая стоимость технологии (оборудования и материала), впрочем в процессе развития технологий цена постепенно снижается.
  • Во-вторых, нехватка квалифицированных, знающих технологию кадров.
  • В-третьих, недостаточная освоенность, отсутствие метрологического обеспечения вызывает опасения при производстве деталей высокой важности.
  • АМ-процессы (Additive Manufacturing) пока не интегрированы в технологию изготовления изделий. «Понятно, что любой ответственный конструктор не поставит в ответственное изделие деталь, не зная при этом, сколько она прослужит», – прокомментировал Алексей Дуб.
  • Важной задачей является необходимость разработки системы сертификации и стандартизации аддитивных изделий, технологических процессов, порошков и композиций. Для решения этих вопросов при Росстандарте был сформирован технический комитет, который ведет работу по созданию нормативной документации в сфере аддитивных технологий.
3D-принтинг начинает распространяться в мире, и Россия не должна отставать в этой области. Применение данных технологий позволяет удешевить изделие, ускорить его проектирование и производство.

– глава Минпромторга Денис Мантуров

Заключение

Популярность неуклонно растет. Хотя суммарный объем мирового рынка относительно невелик (порядка 6 млрд долларов), ежегодные темпы роста не могут не впечатлять – в среднем 20-30%. Впрочем единогласия в оценке роли аддитивных технологий в промышленности все еще нет: одни говорят, что внедрение методов 3D-печати приведет к закату промышленности в традиционном смысле, другие – что трехмерные принтеры станут лишь одним из элементов производственных схем. Но несмотря на все существующие разногласия, большие перспективы аддитивных технологий в промышленности невозможно отрицать.

Непосредственное выращивание изделий со сложной геометрией и из специфических материалов оказывается весьма выгодным с экономической точки зрения. Оно позволяет экономить материал, время, снижает риск ошибок. 3D-принтеры перестали быть «дорогой игрушкой», сегодня они занимают полноправное место среди ключевых технологий

Трехмерная печать, появившись в 1980-е годы, прошла колоссальный эволюционный путь, разделившись на два основных направления – быстрое создание моделей и аддитивное производство. Об основных вехах этого пути - .

Революционные преимущества

Детали изготавливаются непосредственно по компьютерному файлу, содержащему 3D-модель, виртуально нарезанную на тонкие слои, который передается в АП-систему, для послойного формирования конечного изделия. АП-технологии обеспечивают гибкость, позволяющую быстрое производство сложной кастомизирoванной продукции и запасных частей, которые либо не могут быть изготовлены с помощью традиционных производственных технологий, либо требуются в малых объемах. Сложная конфигурация (например, наличие в детали внутренних каналов охлаждения), которую нельзя получить станочной обработкой, может быть легко воспроизведена селективным нанесением материала.

К преимуществам цифровых моделей относится не только произвольность формы, но и возможность их моментальной передачи в любую точку мира, что позволяет организовать локальное производство в мировых масштабах. Еще одной важной особенностью технологий АП является близость получаемой формы изделия к заданной, что существенно сокращает расходы материала и отходы производства.

Совместное исследование European Aeronautic Defense and Space Company (Бристоль, ) и EOS Innovation Center (Уорвик, Великобритания) показало, что экономия сырья при АП может достигать 75%. Благодаря всем этим качествам АП, в сравнении с традиционными производственными технологиями, обладает значительным потенциалом в том, что касается сокращения затрат, энергосбережения и снижения вредных выбросов в атмосферу.

Уникальные возможности АП обеспечивают следующие преимущества:

  • сокращение сроков и стоимости запуска изделия в производство благодаря отсутствию необходимости в специализированной инструментальной оснастке;
  • возможность и экономическая целесообразность мелкосерийного производства;
  • оперативные изменения в проекте на этапе производства;
  • функциональная оптимизация продукции (например, реализация оптимальной формы каналов охлаждения);
  • экономическая целесообразность производства кастомизированной продукции;
  • сокращение потерь и отходов производства;
  • возможности для упрощения логистики, сокращения времени поставок, уменьшения объемов складских запасов;
  • персонализация дизайна.

Рынок аддитивных технологий

2018: Frost & Sullivan прогнозирует рост рынка до $21,5 млрд к 2025 году

Обзор мирового рынка

Ежегодные темпы роста мирового рынка аддитивных технологий составляют 15%. При сохранении CAGR на таком уровне Frost & Sullivan прогнозирует увеличение объема рынка с $5,31 млрд в 2018 году до $21,5 млрд в 2025 году. По мнению аналитиков, к тому времени до 51% рынка будет приходиться на авиационную промышленность, сферу здравоохранения и автомобилестроение. Отрасли, в которых в 2025 году будет наиболее заметно использование технологий аддитивного производства, показаны на рис. 1:


Страны Северной Америки были и, по данным за 2018 года, остаются крупнейшим потребителем аддитивных технологий в мире. В 2015 году объем североамериканского рынка оценивался $2,35 млрд с перспективой роста до $7,65 млрд к 2025 году. Второй по величине - это рынок стран Европы и Ближнего Востока. В 2015 году его суммарный объем составлял $1,81 млрд, а к 2025 году он может увеличиться до $7,18 млрд.

Одним из самых быстро растущих является рынок Азиатско-Тихоокеанского региона. В период 2015-2025 гг. ежегодные темпы роста составят 18,6%, а объем увеличится более чем в 5 раз - с $1,01 млрд в 2015 до $5,56 млрд в 2025 году. При этом на долю Китая будет приходится порядка 70%, считают в Frost & Sullivan.


В странах Северной Америки технологии 3D-печати активно внедряются в аэрокосмической, оборонной и автомобильной отраслях. В последние годы резко увеличилось количество стартап-проектов как в этих, так и других сферах.

Внедрение аддитивных технологий в Европе и на Ближнем Востоке происходит медленнее, чем в странах Северной Америки. Основной фокус здесь делается на использование 3D-печати на основе лазерных технологий в судостроительной отрасли и в промышленности. В то же время в последние годы отмечается рост инвестиций в технологии 3D-печати со стороны автомобилестроительных компаний.

По информации Frost & Sullivan, с точки зрения вклада в общий рынок аддитивных технологий, Россия пока сильно отстает от стран-технологических лидеров. Причем отставание отмечается по всем основным направлениям - производство оборудования для 3D-печати, масштабы применения технологий в ключевых промышленных отраслях, производство сырья и вспомогательных материалов и т.д. По состоянию на февраль 2018 года, доля России в структуре мирового рынка аддитивного производства составляет около 1%.

Потребности России в металлических порошках для 3D-принтеров, а также оборудовании закрываются преимущественно за счет импорта продукции. Основные объемы поставок сырья приходятся на Германию и Великобританию .

Среди крупнейших потребителей порошковых материалов на российском рынке в Frost & Sullivan назвали такие предприятия, как «Авиадвигатель» и НПО «Сатурн» (в обоих случаях - разработка газотурбинных технологий и двигателей), а также «Новомет-Пермь » (производство погружных электроцентробежных насосов для добычи нефти). Значительную работу по развитию и продвижению аддитивных технологий проводят госкорпорации «Росатом » и «Роскосмос ».

По мнению аналитиков, стимулирование разработок в области аддитивного производства в России необходимо поддерживать как с помощью государственного субсидирования (компенсации затрат предприятий на производство и НИОКР), так и за счет прямых инвестиций. Одним из крупнейших игроков, оказывающих финансовую поддержку проектам в сфере аддитивных технологий, является Фонд развития промышленности , выдающий компаниям льготные займы.

Прогнозы развития

  • Применение гранул и порошковых материалов в 3D-печати позволит отказаться от использования треугольных и цилиндрических форм при изготовлении изделий;
  • Применение углеродистого (графитового) волокна и металлопорошков позволит улучшить механические, химические и термические характеристики изделий (в частности, для нефтегазовой и оборонной отраслей);
  • Производители систем компьютерного проектирования и моделирования (CAD , CAE) ведут разработки решений для 3D-печати, которые позволят снизить погрешность при изготовлении изделий и повысить точность производства;
  • Оптимизация характеристик и развитие аддитивных технологий позволит повысить точность, скорость и качество 3D-печати. К 2020 году скорость работы 3D-принтеров увеличится вдвое;
  • Одним из ключевых направлений развития сервисных услуг на рынке 3D-печати станет лизинг 3D-принтеров ;
  • Развитие получит производство 3D-принтеров, позволяющих создавать крупногабаритные изделия с высокой точностью;
  • Материал «графен», известный своими физическими и электрическими свойствами, будет применяться для производства металлических жил (волокон) и элементов питания.

2016: Топ-5 изготовителей систем АП

В число ведущих изготовителей систем АП на 2016 г входят:

  • ExOne (США),
  • Stratasys (Израиль),
  • Voxejet (Германия).

По числу смонтированных систем на 2016 г. с большим отрывом лидируют США, собравшие у себя 38% промышленных установок. Значительное количество установок эксплуатируется также в Японии (9,7%), Германии (9,4%) и Китае (8,7%). Доля России составляет 1,4%.

2012: Рост объема рынка на 28,6%

Консультант Терри Уолер (Terry Wohler) составляет и поддерживает наиболее полный свод знаний о технологиях АП (www.wohlerassociates.com), а также регулярно публикует отчеты, которые приобрели репутацию наиболее авторитетного источника информации о финансировании, тенденциях, возможностях, коллективных проектах, исследованиях и перспективных технологиях в этой области.

Согласно отчету Уолера, опубликованному в ноябре 2013 г., в 2012 г. общемировой сектор продукции и услуг АП показал совокупный годовой прирост 28,6%, что, в пересчете, соответствует рынку объемом $2,204 млрд. По прогнозам Уолера, к 2021 г. объем рынка АП составит более $10 млрд. Исследования McKinsey Global Institute свидетельствуют о том, что влияние АП на мировой ВВП может к 2025 г. достичь $550 млрд. в год.

Еще одним показателем, который отслеживает Уолер, является количество проданных установок АП. В 2012 г. было продано почти 8000 промышленных систем (с ценой выше $5,000). В структуре доходов, полученных от производства и услуг в области АП, доля, приходящаяся на изготовление составных частей конечной продукции, выросла практически с нуля в 2003 г. до 28% в 2012 г.

Технологии и оборудование

С середины 1990-х к 2016 г. были разработаны несколько процессов и систем АП, а возможности их применения существенно расширились и уже охватывают диапазон от быстрого прототипирования и изготовления простых физических макетов до поддержки в разработке дизайна продукции, создания литейных моделей и, в последнее время, непосредственного производства серийных изделий. В частности, GE Aviation объявил о серийном выпуске топливных форсунок для двигателя LEAP. Первые АП-системы производили изделия преимущественно из полимерных материалов (пластиков), тогда как к 2016 г. установки способны производить детали из металла. В аддитивных процессах с использованием металлов детали формируются путем последовательной послойной наплавки или спекания металлического порошка. Такая возможность привлекательна тем, что позволяет изготовление деталей точной или близкой к заданной формы без инструментальной оснастки с минимальной последующей механообработкой, либо вообще без нее. Это представляет особый интерес для авиационно-космической промышленности и биомедицины, поскольку делает возможным выпуск изделий с высокими эксплуатационными характеристиками при низких общих затратах.

На 2016 г. рынок АП-установок делится на три сегмента. Самые высокие темпы роста отмечаются для дешевых 3D-принтеров , ориентированных на создание концептуальных макетов и пригодных для эксплуатации в офисной среде.

Второй набор технологий, занимающий промежуточное положение по стоимости, предназначен для создания прототипов деталей с различной степенью точности и/или функциональности. Дешевые и средние по стоимости установки обычно ориентированы на полимерные материалы.

Установки высокого класса, составляющих третий сегмент, позволяют производство полимерных, металлических и керамических деталей; их цены варьируются от $200 000 до $2 000 000. Установки высокого класса могут быть оптимизированы в расчете на изготовление крупногабаритных деталей, достижение высокой производительности, использование нескольких материалов или с любой другой целью, что повышает стоимость системы.

Энергопотребление и влияние на окружающую среду

Исчерпывающее сравнение АП и других производственных процессов с точки зрения энергопотребления, расходования водных ресурсов, захоронения отходов и использования первичных материалов проведено к 2016 г. в рамках проекта ATKINS. Результаты проекта указывают на то, что с точки зрения влияния на окружающую среду АП имеет явные преимущества, однако энергопотребление этой технологии (13,1 кг CO2 на изделие) значительно выше показателей для технологий литья (1,9 кг CO2). Впрочем, другие исследования потребления энергии в различных процессах АП ведут к заметным расхождениям в данных, что указывает на необходимость дальнейшего, более целенаправленного изучения этой проблемы.

Аналогичным образом у технологий АП есть значительный потенциал в вопросе снижения выброса парниковых газов посредством оптимизации дизайна изделий и сокращения потерь материала. Результаты проекта ATIKINS приводят к заключению, что оптимальный дизайн должен приводить к 40%-ному снижению веса и экономии материала. Выполненный в рамках проекта анализ показывает, что снижение веса магистрального самолета на 100 кг на протяжении всего жизненного цикла влечет за собой экономию $2,5 млн на топливных расходах и сокращает выбросы углекислого газа на 1,3 млн т.

Имеется несколько отчетов по результатам исследований влияния АП на окружающую среду. Однако многие вопросы к 2016 г. остаются неразрешенными, и точная оценка экологических последствий АП требует дальнейших исследований. При этом очевидно, что наибольший потенциал в вопросах снижения влияния на окружающую среду имеют изделия, спроектированные таким образом, чтобы в полной мере задействовать уникальные возможности по снижению веса, предлагаемые технологиями АП.

Применения аддитивного производства

На 2016 г. преобладающей областью использования АП-процессов остается быстрое прототипирование. Некоторую часть приложений технологии АП составляет также быстрое изготовление инструментальной оснастки, в частности производство пресс-форм.

По мере совершенствования существующих и разработки новых, более развитых технологий АП они находят себе все более широкое применение. К 2016 г. эти технологии используются для изготовления разнообразной продукции, в том числе инструментов для формования, деталей для авиационно-космической, оборонной и автомобильной промышленности, электроники и многого другого.

Авиационно-космическая промышленность

Эта сфера проявляет острый интерес к АП-технологиям с момента их появления; возможность устранить множество ограничений на пути от проекта к производству позволяет реализовать в проекте решения, повышающие эффективность и снижающие вес деталей. Более того, по самой своей природе этот рынок требует мелкосерийного производства высококачественных деталей, поэтому избавление от инструментальной оснастки, предлагаемое АП-технологиями, приносит существенные выгоды. Сертификационные требования в этой сфере являются весьма жесткими. Тем не менее ряд систем и материалов прошел сертификацию, и на 2016 г АП-технологии используются для мелкосерийного производства деталей летательных аппаратов.